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INTRODUCTION 

Rising energy c o s t s  as w e l l  as c u r r e n t  and proposed noise  regulat ions have 
prompted cont inuing research and development of l i g h t e r  weight, improved noise- 
suppression systems f o r  the turbofan engines of commercial a i r c r a f t .  The use of 
uniform a c o u s t i c  duc t  l i n e r s  ( l i n e r s  with w a l l  impedances t h a t  do not  vary a x i a l l y  
o r  c i r c u m f e r e n t i a l l y )  to  suppress the noise  generated by these turbofan engines i s  
w e l l  e s t ab l i shed .  However, the above f a c t o r s  r e q u i r e  t h a t  acous t i c - l i ne r  designs be 
con t inua l ly  r e f ined  and updated t o  inco rpora t e  new concepts. Recently, va r i ab le -  
impedance l i n e r  concepts ( f i g .  1 )  have been considered i n  the  design of more e f f ec -  
t i v e  noise-suppression systems. 

L i t e r a t u r e  on a x i a l l y  segmented l i n e r s ,  a concept i n i t i a l l y  der ived by Zorumski 
(ref. I ) ,  is  exhaustive.  Lester and Posey ( r e f .  2) have shown t h a t  an a x i a l l y  seg- 
mented l i n e r  with two s e c t i o n s  gives  more suppression than the  best uniform l i n e r .  
Sawdy, Beckemeyer, and Pa t t e r son  ( r e f .  3) have shown t h a t  t h i s  i nc rease  i n  suppres- 
s i o n  is  due t o  a s c a t t e r i n g  of t he  sound a t  t h e  f i r s t  a x i a l  d i s c o n t i n u i t y  i n t o  higher 
order  r a d i a l  modes, which are then m o r e  h ighly damped by the  second sec t ion .  How- 
ever ,  c e r t a i n  c h a r a c t e r i s t i c s  of a x i a l l y  segmented l i n e r s  l i m i t  t h e i r  usefulness.  
These include lack of a broadband a t t e n u a t i o n  spectrum and i n a b i l i t y  t o  outperform 
uniform l i n e r s  f o r  w e l l  cut-on modes ( r e f .  4 ) .  

Mani ( r e f .  5) observed experimentally t h a t  an a d d i t i o n a l  suppression of as much 
as 5 dB could be obtained a t  some d i r e c t i v i t y  angles  by c i r cumfe ren t i a l ly  segmenting 
a uniform l i n e r .  H e  suggested t h a t  the increased suppression w a s  because of scatter- 
ing of a c o u s t i c  energy i n t o  higher order  c i r cumfe ren t i a l  modes, which w e r e  more highly 
damped. I n  add i t ion ,  Mani suggested combining a x i a l l y  and c i r cumfe ren t i a l ly  seg- 
mented l i n e r s  t o  form a checkerboard p a t t e r n .  These experimental  f indings motivated 
r e sea rche r s  t o  develop a n a l y t i c a l  models t o  v e r i f y  these f indings.  *us, i n  t h i s  
i n s t ance ,  duct-acoustics experimental work has preceded and guided a n a l y t i c a l  
development i n  l i n e r  technology. 

Development of reliable a n a l y t i c a l  models f o r  p r e d i c t i n g  noise suppression i n  
ducts  with c i r c u m f e r e n t i a l l y  segmented l i n e r s  is a p r e r e q u i s i t e  t o  the optimum design 
of these l i n e r s .  Watson ( r e f .  6 )  developed a no-f low model f o r  a rectangular  duct  
based on a f ini te-element  method, while Astley e t  a l .  ( r e f .  7)  incorporated t h e  
e f f e c t s  of a sheared mean flow i n t o  a c i r c u l a r  duc t  using the  f ini te-element  method. 
Since the f ini te-element  methods developed i n  r e fe rences  6 and 7 are i n  core  solu-  
t i o n s ,  the number of c i r cumfe ren t i a l  strips is seve re ly  r e s t r i c t e d  and the  e f f e c t s  of 
the sound source are d i f f i c u l t  t o  evaluate .  These models are the re fo re  no t  s u i t e d  
f o r  opt imizat ion s t u d i e s .  N a m b a  and Fukushige ( r e f .  8) used the  equivalent  surface-  
source method to  eva lua te  a t t e n u a t i o n  p r o p e r t i e s  of c i r cumfe ren t i a l ly  segmented 
l i n e r s  i n  a r ec t angu la r  duct  with uniform mean flow. They concluded t h a t  circum- 
f e r e n t i a l l y  segmented acous t i c  l i n e r s  br ing about modal t r a n s f e r  of sound energy 
between modes of d i f f e r e n t  c i r cumfe ren t i a l  wave numbers and lead t o  higher power 
a t t e n u a t i o n  l e v e l s  and broader e f f e c t i v e  a t t e n u a t i o n  bandwidth than a uniform 
l i n e r .  Watson ( r e f .  9) used the Galerkin method ( r e f .  10) t o  evaluate  a t t e n u a t i o n  
p r o p e r t i e s  i n  c i r c u l a r  ducts  without mean flow. Resul ts  i nd ica t ed  t h a t  circumfer- 
e n t i a l l y  segmented l i n e r s  scatter energy between c i r cumfe ren t i a l  modes of d i f f e r e n t  
orders  and lead t o  broader a t t e n u a t i o n  curves. However, before c i r cumfe ren t i a l ly  
segmented l i n e r s  can be f u l l y  evaluated, a d d i t i o n a l  s t u d i e s  evaluat ing the  e f f e c t s  of 



frequency, source complexity, and duc t  length are needed. Such l i n e r s  should a l s o  be 
opt imal ly  designed to  achieve maximum suppression and t h e i r  off-optimum p r o p e r t i e s  
should be explored before  their p o t e n t i a l  b e n e f i t  can be f u l l y  r ea l i zed .  

This paper assesses the r e l a t i v e  merits of circumf e r e n t i a l l y  segmented l i n e r s  
by comparing t h e i r  optimum a t t e n u a t i o n  p r o p e r t i e s  with those of optimized uniform 
l i n e r s .  Off-optimum p r o p e r t i e s  are a l s o  discussed as w e l l  as e f f e c t s  of frequency, 
source complexity, and duc t  length.  The a n a l y t i c a l  p r e d i c t i o n  program developed i n  
reference 9 i s  used i n  conjunction with an opt imizat ion method t o  compute optimum 
p r o p e r t i e s  f o r  t h e  uniform and segmented l i n e r .  The opt imizat ion method uses the  
Davidon-Fletcher-Powell algorithm ( r e f .  1 1 ) .  However, a series of two-dimensional 
contour maps is used t o  ob ta in  good s t a r t i n g  values f o r  t h e  algorithm. Both plane 
and c i r cumfe ren t i a l  standing-wave sources are considered i n  the study. F i n a l l y ,  
emphasis i s  placed on segmented-lining conf igu ra t ions  c o n s i s t i n g  of hard-wall/soft-  
w a l l  combinations of the kind considered by Mani ( r e f .  5 ) .  

ANALYSIS 

Consider a semi - in f in i t e  c i r c u l a r  duct  w i t h  r a d i u s  z, as shown i n  f i g u r e  2. 
( A  l ist  of symbols used i n  t h i s  paper appears a f t e r  t h e  references.)  A circumfer- 
e n t i a l l y  segmented l i n e r  with s p e c i f i c  a c o u s t i c  admittance 
o u t e r  w a l l ,  and an i n i t i a l  no i se  source i n  t e r m s  of a p re s su re  boundary cond i t ion  is  
given a t  z' = 0. Further,  the segmented l i n e r  is assumed to  c o n s i s t  of t w o  piece- 
w i s e  uniform l i n e r s  with admittances p, and p2, as shown i n  f i g u r e  3. These 
piecewise uniform l i n e r s  are combined i n  c i r cumfe ren t i a l  series t o  fo rm 'a  t o t a l  of 
2T strips. The admittance func t ion  $ ( e )  is expanded as t h e  Fourier series 

$ ( e )  is placed along the 

. . .) 2(4 - $2) (sin Te + s i n  3Te + s i n  5T8 + 

K 3 5 $( 8) = pa, + 

where pa" is the average value of $(€I) f o r  the c i r c u m f e r e n t i a l l y  segmented l i n e r  

= - I  I 

pav 9- J o  

and T is the  p e r i o d i c i t y  of t he  l i n e r .  w i th in  the  con tex t  of t h i s  paper an o p t i -  
mized c i r cumfe ren t i a l ly  segmented l i n e r  is def ined as a l i n e r  configurat ion possess- 
i n g  uniform admittance P1 and $, chosen to  maximize the  transmission l o s s  over 
t h e  length L. Finding t h i s  optimized l i n e r  is t h e  major t h r u s t  of t h i s  paper. 

Dimensionless acous t i c  waves propagating within the duct  depicted i n  f i g u r e  2 
s a t i s f y  the Helmholtz equation ( r e f .  9 )  

-i ut i n  which a t i m e  dependence of the form e has been assumed, K = = / E  i s  
t h e  wave number, P is  the  dimensionless a c o u s t i c  pressure,  i s  the  angular  
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- - 
frequency, V2 i s  t h e  Laplace operator ,  t denotes t i m e ,  and c is the ambient 
speed of sound. Throughout t h i s  paper, a l l  d i s t a n c e s  are r e f e r r e d  t the  duct  
r ad ius  a' and the  a c o u s t i c  p re s su re  i s  r e f e r r e d  t o  the  q u a n t i t y  p c  , i n  which 

t h e  ou te r  w a l l  is expressed i n  t e r m s  of t he  admittance p ( 8 )  as follows: 

-9 
i s  t h e  ambient d e n s i t y  of the m e d i u m .  I n  add i t ion ,  t he  boundary condi t ion along 

whereas t h e  boundary condi t ion a t  the source plane i s  expressed as follows: 

where Q ( r , e )  is t h e  known source pressure function. 

Equations ( 2 )  t o  ( 4 )  c o n s t i t u t e  a boundary value problem f o r  the acous t i c  pres- 
su re  f i e l d  P ( r ,  0 ,z) .  Furthermore, t h i s  f i e l d  can only con ta in  waves running t o  the  
r i g h t  because t h e  duc t  i n  f i g u r e  2 is semi- inf ini te .  In  t h i s  paper, the s o l u t i o n  is 
obtained by the eigenfunct ion expansion technique (ref. 3 ) .  The eigenfunction expan- 
s i o n  technique expands the  acous t i c  pressure f i e l d  i n  terms of the eigenfunctions of 
the c i r cumfe ren t i a l ly  segmented l i n e r :  

i n  which K~ i s  t h e  complex a x i a l  wave number and P ( r , 8 )  is the acous t i c  pressure 
eigenfunct ion f o r  t h e  c i r cumfe ren t i a l ly  segmented l i n e r .  Solut ions f o r  t he  eigen- 
funct ion p R ( r , e )  and f o r  the a x i a l  wave number are developed i n  the following sec- 
t i on .  These eigenfunct ions can a l s o  be shown t o  be orthogonal ( r e f .  9), so t h a t  
s u b s t i t u t i n g  equat ion ( 5 )  i n t o  equation ( 4 )  and making use of the or thogonal i ty  con- 
d i t i o n  allows t h e  following determination of 

R 

AR: 

A =  R 

A measure of t h e  l i n e r  e f f e c t i v e n e s s  as a sound absorber is  given by the 
transmission-loss func t ion  TL as 
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and 

where Re( ) denotes the  real part  of the complex express ion  within the  parentheses  
and the s u p e r s c r i p t  a s t e r i s k  i n d i c a t e s  the complex conjugate .  The value of the 
t ransmission-loss  func t ion  can be obtained once the  s o l u t i o n  €or the e igenfunct ion  
and f o r  the  a x i a l  wave number is  obtained.  The methodology used to  ob ta in  t h e s e  
s o l u t i o n s  is descr ibed i n  the fol lowing sec t ion .  

Solut ion f o r  Eigenfunction and Axial Wave Number 

If equat ion ( 5 )  is  s u b s t i t u t e d  i n t o  equat ions ( 2 )  and ( 3 ) ,  each eigenfunct ion 
p R ( r , e )  can be shown t o  s a t i s f y  a Helmholtz equat ion 

with the homogeneous boundary condi t ions  

where V2 is  the  two-dimensional Laplace opera tor  i n  r and 8 and the  eigenvalue 
is  r e l a t e d  t o  the  a x i a l  wave number by the  equat ion 

2 2 2 
R R h = K  - K  (11) 

m u a t i o n s  (9)  t o  (1 1 ) c o n s t i t u t e  an eigenvalue problem which must be solved t o  ob ta in  
An exac t  a n a l y t i c a l  so lu-  the  eigenfunct ion P ( r , O )  and the a x i a l  wave number 

t i o n  t o  t h i s  eigenvafue problem is  poss ib l e  and i s  developed i n  appendix A. The 
a n a l y t i c a l  s o l u t i o n  r equ i r e s  f ind ing  the roo t s  of a t ranscendenta l  equat ion which 
inc lude  Bessel func t ions  of many orders .  To avoid the  complexity of i t e r a t i v e l y  
so lv ing  t h i s  t ranscendenta l  equat ion,  a numerical s o l u t i o n  t o  t h i s  e igenvalue problem 
is obtained. The methodology f o r  ob ta in ing  this numerical s o l u t i o n  is  descr ibed i n  
the following paragraphs.  

KR* 

The numerical technique f o r  ob ta in ing  so lu t ions  t o  equat ions (9 )  and (10)  is  
exac t ly  a s  presented i n  re ference  9 and only enough w i l l  be repeated to  provide t h e  

4 



necessary nomenclature and ground work f o r  t he  opt imiza t ion  method. Thus, t he  
s o l u t i o n  f o r  the e igenfunct ion  PR(r ,O) is  expressed i n  the  form 

where &, r ep resen t s  t he  hard-wall eigenvalues which s a t i s f y  the  t ranscendenta l  
equat ion  J;(&,,) = 0 and the normalizat ion cons t an t  N is m,n 

Galerk in ' s  method al lows determinat ion of t he  modal c o e f f i c i e n t s  
a s  w e l l  as the  eigenvalue 

A i l n  and BR 
m, n 

hR. 

There remains the  problem of determining the  number of c i r cumfe ren t i a l  and 
r a d i a l  modes ( M  and N )  which a r e  needed i n  equat ion ( 1 2 )  t o  obta in  an accu ra t e  
r e s o l u t i o n  f o r  t he  eigenmode P ( r , e ) .  S t r i c t l y  speaking, N should be de t e r -  
mined such t h a t  t he  exac t  r ad ia f  dependence of t he  exac t  eigenmode is  accura t e ly  
resolved by the  series of hard-wall modes, o r  

N 

J m ( A R r )  = dn Jm(hm,nr)  
n=O 

where dn i s  an appropr i a t e ly  chosen constant .  S tudies  reported i n  reference 9; as 
w e l l  a s  a d d i t i o n a l  ones performed by the  author ,  show t h a t  N = 9 gives  good agree- 
ment between the  exac t  and the  numerically computed mode shape f o r  a range of f r e -  
q.uencies and m numbers considered here. Thus, r e s u l t s  i n  t h i s  paper w i l l  be 
computed with N = 9. 

A simple r u l e  of thumb f o r  determining the  upper index of summation M has been 
developed. This index should be chosen so t h a t  t he  i n c i d e n t  wave can be accu ra t e ly  
resolved by s u b s t i t u t i n g  z = 0 i n t o  equat ion ( 5 ) .  I n  add i t ion ,  M is  in t ima te ly  
r e l a t e d  t o  the  p e r i o d i c i t y  of t he  l i n e r .  For purposes of t h i s  paper, cons ide ra t ion  
i s  r e s t r i c t e d  to  s i x  c i r cumfe ren t i a l  modes. This does not  mean t h a t  M = 5, s ince  
it is shown i n  appendix A t h a t  only s e l e c t e d  values  of m should appear i n  equa- 
t i o n  ( 1 2 )  f o r  any s p a t i a l l y  d i s c r e t e  given source. Thus, only the f i r s t  s i x  of these  
se l ec t ed  values  of m a r e  included. This p a r t i c u l a r  choice of M w a s  based on con- 
vergence s t u d i e s  i n  which it w a s  observed t h a t  v i r t u a l l y  no change i n  the  transmis- 
s ion  loss occurs as M is increased  beyond t h i s  value f o r  a range of f requencies  and 
duc t  lengths .  

S c a t t e r i n g  From Two Axial Di scon t inu i t i e s  

A f i n i t e - l e n g t h  c i r cumfe ren t i a l ly  segmented l i n e r  combined with two s e m i -  
i n f i n i t e  hard-wall s e c t i o n s  as depic ted  i n  f i g u r e s  4 and 5 is  now used f o r  t he  s tudy 
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of the  problem of s c a t t e r i n g  f r o m  two a x i a l  d i s c o n t i n u i t i e s .  An a c o u s t i c  wave P I  
from t h e  l e f t  is i n c i d e n t  a t  z = 0. This r e s u l t s  i n  a r e f l e c t e d  wave pR i n  the  
f i r s t  hard-wall s e c t i o n  as w e l l  as a t r ansmi t t ed  wave i n  the  second hard-wall 
s ec t ion .  It is necessary t o  compute the  r e s u l t i n g  t ransmission loss over t he  circum- 
f e r e n t i a l l y  segmented l i n e r .  In general ,  i n t e r a c t i o n  of the i n c i d e n t  wave with t h e  
p e r i p h e r a l  l i n e r  is expected to  r e s u l t  i n  modal t r a n s f e r  of acous t i c  energy among 
r a d i a l  and c i r cumfe ren t i a l  modes of d i f f e r e n t  orders .  

pt 

The cons t an t  geometry of the p re sen t  problem makes it amenable t o  the  mode match- 
ing technique ( r e f .  3 ) .  Thus, t he  inc iden t ,  r e f l e c t e d ,  and t r ansmi t t ed  waves i n  t h e  
hard-wall s e c t i o n s  are expressed i n  terms of hard-wall d u c t  modes 

M N  r )  exp(iK 2 )  
I = (ai,n cos m e  + b1 s i n  m e )  Jm' 'm,n ~ . . .m,n  - 

N 
m,n m,n 

P ( r , e , z )  
m=O n=O 

( 1 3 )  

r )  e x p [ i K  ( z  - L)] M N  
t t Jm(Am,n . .- . -m,n - . - . . . 

N P ( r , e , z )  = (at cos m e  + b s i n  m e )  
m,n m,n m=O n=O 

and 

whereas the  s o l u t i o n  f o r  t he  c i r cumfe ren t i a l ly  segmented l i n e r  is  expressed i n  terms 
of the c i r cumfe ren t i a l  l i n e r  duct  modes 

i n  which t h e  eigenmode PA and the ax ia l  propagation cons t an t  K are s o l u t i o n s  t o  
equations (9)  t o  ( 1  1 ) . The c o e f f i c i e n t s  i n  the  expansion f o r  t he  i n c i d e n t  wave are 
assumed t o  be known whereas those i n  the expansion f o r  t he  waves i n  equat ions ( 1 4 )  
t o  ( 1 7 )  have to  be determined. It is i n s t r u c t i v e  t o  note  t h a t  B would also be 
ze ro  i f  t h e  c i r cumfe ren t i a l ly  l i ned  s e c t i o n  w a s  i n f i n i t e l y  long. (See eq. (5).) 
However, t he  f i n i t e  termination of the l i ned  s e c t i o n  l eads  to  r e f l e c t i o n s  of t h e  
a c o u s t i c  waves a t  z = L as ind ica t ed  by the  a d d i t i o n a l  t e r m  

R 

R 

BR exp[-iKR(z - L ) ]  

6 



i n  equation (17) .  Further ,  t h e  length L has been included i n  equations (1  5 )  
and (17) t o  a s su re  t h a t  t he  waves running t o  the l e f t  and t o  the r i g h t  a t t e n u a t e  
properly i n  their d i r e c t i o n  of t r a v e l .  

Phys ica l  cons ide ra t ions  requi re  t h a t  the a c o u s t i c  p re s su re  and the  corresponding 
a x i a l  d e r i v a t i v e  remain continuous a t  each junct ion between the  c i r cumfe ren t i a l  l i n e r  
and the hard-wall duct.  Such requirements ensure c o n t i n u i t y  t o  the  f i r s t  order  of 
m a s s  and momentum between ad jacen t  duc t  segments. Expressed here  i n  vector  form, 

where ( 0 )  is a 4 x 1 n u l l  vector  and {E} i s  a 4 x 1 r e s i d u a l  vector ,  as shown i n  
the  following: 

and 

where 

I R 
= P ( r , 0 , 0 )  + P ( r , 0 , 0 )  - p( r ,0 ,0 )  

7 



and 

The mode matching equations are obtained by r equ i r ing  t h a t  t he  r e s i d u a l  vector  be 
orthogonal to  each of the funct ions P R ( r , 8 ) ,  or 

where 

N = (2M + 1 ) ( N  + 1 )  - 1 

Equation ( 1 8 )  c o n s t i t u t e s  a system of l i n e a r  equations which can be expressed i n  
matrix form as 

where {,$} contains  the unknown c o e f f i c i e n t s  of equat ions (1 41, (1  5 1 ,  and (1 7 )  and 
{F} contains  the known c o e f f i c i e n t s  i n  the  expansion f o r  t h e  i n c i d e n t  wave. (See 
eq. (13).) Furthermore, the order  of t h i s  system of equat ions is 4(2M + I ) ( N  + 1 ) .  
Equation (19) has been solved using Gaussian e l imina t ion  to  o b t a i n  {,$}. 

The transmission-loss funct ion TL is s t i l l  given by equations ( 7 )  and (8)  f o r  
t h e  f i n i t e  c i r cumfe ren t i a l ly  segmented l i n e r  as 

However, t he  p o w e r  of t he  i n c i d e n t  wave is 

Equation (20) is  a general  expression which assumes t h a t  t h e  i n c i d e n t  a c o u s t i c  wave 
is composed of mult iple  c i r cumfe ren t i a l  modes. Transmission-loss values presented i n  
t h e  "Results and Discussion" s e c t i o n  of t h i s  paper are f o r  i n c i d e n t  waves c o n s i s t i n g  
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of only a s i n g l e  c i r cumfe ren t i a l  mode, 
wave reduces t o  

m = mo, so t h a t  the  power of the inc iden t  

(21  1 W(0) = w (0) 
mO 

and 

N 

I n  add i t ion ,  the ou tpu t  acous t i c  p o w e r  is ca l cu la t ed  from the t ransmi t ted  acous t i c  
wave f o r  z = L as 

M 

W(L) = 
m= 0 

and 

N , 

(23) 

Now cutof f  modes have the proper ty  Re(% n )  = 0 (i.e., K < whereas cut-on 
modes have the  proper ty  > 0. TAUS, no a c o u s t i c  energy is t ranspor ted  by 
cu tof f  modes. Hence, the summation i n  equat ions (20) t o  (24) a c t u a l l y  reduces t o  
summation f o r  a f i n i t e  number of cut-on modes. The t ransmission-loss  func t ion  f o r  a 
s i n g l e  circumferential-mode inpu t  becomes 

whereas the  t ransmission-loss  func t ion  f o r  c i r cumfe ren t i a l  mode m is  

9 



Thus, r ep resen t s  the amount of i nc iden t  a c o u s t i c  energy t h a t  is  s c a t t e r e d  and 
then  absorbed from c i r cumfe ren t i a l  mode mo t o  c i r cumfe ren t i a l  mode m. I t  should 
be noted t h a t  no s c a t t e r i n g  between modes of d i f f e r e n t  circumferential-mode o rde r s  
occurs  f o r  a uniform or a x i a l l y  segmented l i n e r .  

TLm 

Optimization Method 

An opt imiza t ion  method w a s  used to  design and s tudy  c i r cumfe ren t i a l ly  segmented 
l i n e r s  f o r  s p e c i f i e d  modal i npu t s  and source f requencies .  Although a v a r i e t y  of 
op t imiza t ion  methods e x i s t s ,  good success  has been obtained with the  so-cal led F a s i -  
Newton opt imiza t ion  algori thms.  These algori thms combine the  b e s t  f e a t u r e s  of 
s t e e p e s t  a scen t  and Newton's method. Apparently, t he  Davidon-Fletcher-Powell (DFP) 
opt imizat ion algori thm has been the  most commonly used i n  duc t  acous t i c s  ( r e f s .  2 
and 3) .  Thus, the DFP opt imizat ion algori thm with the  t ransmission-loss  func t ion  
TL( p,, p2) The f r e e  va r i ab le s  i n  the  
algori thm were taken to  be the  r e s i s t a n c e  R and the  reac tance  x of t he  two 
admittance segments 

as the  opt imiza t ion  parameter is used here .  

and 

However, contour maps w e r e  f i r s t  obtained t o  provide good s t a r t i n g  values  f o r  t he  
algori thm. More d e t a i l e d  information on the opt imiza t ion  algori thm used he re in  i s  
given i n  appendix B. 

RESULTS AND DISCUSSION 

Trend s t u d i e s  f o r  both uniform and c i r cumfe ren t i a l ly  segmented l i n e r s  are pre- 
sented.  F i r s t ,  optimized segmented l i n e r s  are presented  and compared to  optimized 
uniform l i n e r s  f o r  t he  semi- inf in i te  duct  depic ted  i n  f i g u r e  2. In order  to  reduce 
computational c o s t ,  op t imiza t ion  s t u d i e s  w e r e  performed only with L = 2. Second, 
s t u d i e s  are presented  i n  which n e i t h e r  the  uniform nor t h e  segmented l i n e r  is o p t i -  
mized (i.e., off-optimum s t u d i e s )  with L = 2. These off-optimum trend s t u d i e s  
include the e f f e c t s  of the  two hard-wall s e c t i o n s  (see f i g .  4) ,  so equat ions ( 2 3 )  
and (24)  a r e  used t o  determine t ransmission losses. F i n a l l y ,  a cursory i n v e s t i g a t i o n  
of the  e f f e c t s  of the  l i n i n g  length L is presented.  These e f f e c t s  are i n v e s t i g a t e d  
f o r  t he  t r e a t e d  s e c t i o n  i n s t a l l e d  within a hard-wall duc t  only. (See eqs. (23 )  
and (241.) 
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Optimization Studies  

Optimization r e s u l t s  f o r  t he  semi- inf ini te  duct  are presented i n  the fol lowing 
subsect ions.  F i r s t ,  r e s u l t s  f o r  a plane wave i n p u t  i n t o  a uniform l i n e r  are com- 
pared t o \ r e s u l t s  i n  an e x i s t i n g  work t o  ob ta in  confidence i n  the  opt imizat ion 
method. Second, optimized segmented l i n e r s  are compared with optimized uniform 
l i n e r s  f o r  a range of f requencies  and source inpu t s .  Segmented-liner s t u d i e s  
c o n s i s t  of both hard-wall/soft-wall  and soft-wall/soft-wall  l i n i n g  conf igu ra t ions ,  

Plane wave i n c i d e n t  i n t o  uniform l iner . -  O p t i m u m  transmission-loss values for a 
plane wave source are compared t o  those computed from the  exac t  a n a l y s i s  of r e f e r -  
ence 2 i n  f i g u r e  6. Exce l l en t  agreement between t h e  two analyses  is observed. 
O p t i m u m  l i n e r  p r o p e r t i e s  computed from the two analyses  are presented i n  f i g u r e s  7 
and 8. Although the optimum r e s i s t a n c e  values compare favorably,  agreement f o r  t he  
optimum reactance d e t e r i o r a t e s  with inc reas ing  frequency. This a n a l y s i s  shows 
e x c e l l e n t  agreement a t  low frequencies  b u t  y i e l d s  higher  values than reference 2 as 
the frequency inc reases .  However, the d i f f e r e n c e s  i n  reactance f a i l  t o  change t h e  
optimum transmission losses .  Thus, t he re  may be more than one value of admittance i n  
the complex admittance plane which gives the  same transmission-loss value. 

Hard-wall/soft-wall opt imizat ion s tudies . -  Figure 9 shows the  optimum 
transmission-loss spectrum f o r  a c i r cumfe ren t i a l ly  segmented l i n e r  with d i f f e r e n t  
p e r i o d i c i t i e s .  
used as a base l ine  f o r  comparison. The width of t he  c i r cumfe ren t i a l  s t r i p s  plays an 
important r o l e  i n  the l i n e r  performance. The performance of the segmented l i n e r  is  
an inc reas ing  func t ion  of t he  p e r i o d i c i t y  a t  each value of frequency. In a d d i t i o n ,  
t h e  uniform l i n e r  gives  more suppression than t h e  segmented l i n e r s ,  Note t h a t  t he  
segmented-liner r e s u l t s  approach the  unif orm-liner r e s u l t s  as the p e r i o d i c i t y  
inc reases .  Optimum l i n e r  p r o p e r t i e s  f o r  t he  segmented l i n e r  are not  presented. 
However, it w a s  observed t h a t  
simply approaches t h e  optimum admittance f o r  t h e  uniform l i n e r .  

The-source is  taken t o  be a plane-wave with the  optimum uniform l i n e r  

pay f o r  the segmented l i n e r s  with high p e r i o d i c i t y  

O p t i m u m  t ransmission l o s s e s  are presented i n  f i g u r e  10 f o r  a segmented and a 
uniform l i n e r .  The i n c i d e n t  wave f o r  both cases w a s  chosen t o  have a c i r cumfe ren t i a l  
mode of m = 5 
of 5 so t h a t  t he  m numbers included i n  equation ( 1 2 )  are m = 5, 10, 15, ... from 
the d i scuss ion  i n  appendix A. As shown i n  figure 10, t he  uniform l i n e r  gives  better 
performance than the  segmented l i n e r  a t  t he  optimum p o i n t  f o r  a l l  frequencies con- 
s idered.  O p t i m u m  l i n e r  p r o p e r t i e s  f o r  the l i n e r s  are shown i n  f i g u r e s  11 and 12. 
Figure 11 shows an i n t e r e s t i n g  t rend f o r  t he  optimum conductance. (The conductance 
is the real part  of the complex admittance.) Note t h a t  t he  optimum conductance of 
t h e  uniform and segmented l i n e r s  are approximately equal. On the  other  hand, f i g -  
ure  12 shows t h a t  the o p t i m u m  susceptance of t he  two l i n e r s  does no t  show such t r ends  
(i.e., t he  susceptance is the  negative value of t he  imaginary part of the complex 
admittance).  

( Q ( r , 8 )  = cos 58 J 5 ( A 5 , 0 r ) ) .  The segmented l i n e r  has a p e r i o d i c i t y  

W e  now t u r n  to  opt imizat ion s t u d i e s  a t  the  higher  f requencies  f o r  which high 
m-number sources are poss ib l e .  A cursory i n v e s t i g a t i o n  of t he  matrices of equa- 
t i o n  ( A 9 )  r e v e a l s  t h a t  t h e  o f f -d i agona l  t e r m s  of t hese  matrices inc rease  i n  magnitude 
with inc reas ing  frequency, so t h a t  s t ronge r  coupling between the  m numbers might be 
expected a t  t h e  h ighe r  f requencies  than t h e  l o w e r  ones. Figure 13 compares the  
transmission l o s s e s  f o r  a uniform and a segmented l i n e r .  The source f o r  both l i n e r s  
w a s  a c i r c u m f e r e n t i a l  mode of m = 10 
p e r i o d i c i t y  of t he  segmented l i n e r  equal  t o  10 ( T  = 10) .  The segmented l i n e r  gives  
g r e a t e r  broadband performance than the  uniform l i n e r .  Further ,  t he  performance 

(Q( r ,0 )  = cos 108 J , o ( A , o , o r ) )  with the 
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of the  segmented l i n e r  approaches t h a t  of the  uniform l i n e r  as the frequency g e t s  
c l o s e r  to  the cut-on value of the m number of t he  source.  The o p t i m u m  conductance 
and the optimum susceptance f o r  the uniform and segmented l i n e r s  are depic ted  i n  
f i g u r e s  14 and 15. Optimum conductance values  f o r  both the uniform and the segmented 
l i n e r  decrease i n  magnitude with inc reas ing  frequency; however, the segmented-liner 
values are higher  than the  uniform-liner values .  O p t i m u m  susceptance values  f o r  t he  
uniform l i n e r  approach zero a t  most f requencies .  In  c o n t r a s t ,  the  optimum suscept-  
ance values f o r  t he  segmented l i n e r  vary w i t h  frequency from 0.29 to  0.62. 

Figure 16 s h o w s a  comparison of the  optimum transmission-loss  spectrums f o r  a 
uniform and a segmented l i n e r  i n  which the  c i r cumfe ren t i a l  mode order  of t he  source  
i s  15 (Q( r ,0 )  = cos 150 J 1 5 ( h 1 5 , 0 r ) ) .  
t ransmission lo s ses  than the  uniform l i n e r .  O p t i m u m  conductance values f o r  the 
uniform and the segmented l i n e r  are shown i n  f i g u r e  17. Resul ts  i n  t h i s  f i g u r e  show 
t h a t  the conductance of the segmented l i n e r  is  roughly twice that of the uniform 
l i n e r .  O p t i m u m  susceptance values  f o r  the two l i n e r s  are given i n  f i g u r e  18 and show 
t rends  c o n s i s t e n t  with f i g u r e  13. Note that the optimum susceptance of t he  uniform 
l i n e r  is approximately zero, whereas t h a t  of the  segmented l i n e r  is  not .  

Note t h a t  t he  segmented l i n e r  gives  higher  

Sof t-wall/sof t - w a l l  op t imiza t ion  s t u d i e s  .- The r e s u l t s  presented so far 

zero. S tudies  w e r e  a l s o  performed i n  which p1 and p2 w e r e  var ied  i n  the  op t i -  
mizat ion algorithm. This l i n i n g  conf igu ra t ion  f o r  which fj2 is  not  r e s t r i c t e d  t o  
ze ro  is  r e f e r r e d  t o  as the sof t -wal l / sof t -wal l  c i r c u m f e r e n t i a l l y  segmented l i n e r .  
Further ,  r e s u l t s  f o r  the, sof t -wal l / sof t -wal l  segmented l i n e r  w e r e  computed f o r  t he  
s a m e  sources  as f o r  the hard-wall/soft-wall  op t imiza t ion  s t u d i e s .  Optimum p r o p e r t i e s  
f o r  the plane-wave source and the source with c i r cumfe ren t i a l  dependence of m = 5 
converge with the  uniform-liner optimum p r o p e r t i e s  where 
f requencies  the  admittances w e r e  d i f f e r e n t ,  the optimum transmission loss f o r  the 
segmented l i n e r  w a s  the same as the uniform l i n e r  t o  wi th in  1 dB. A s i g n i f i c a n t  
r e s u l t  w a s  obtained f o r  t he  sources  with m = 10 and m = 15. For these  sources ,  
the opt imizat ion algori thm shows t h a t  p2 = 0 + O i  w a s  t he  optimum p2 with p1 
being i d e n t i c a l  t o  the  value obtained from the hard-wall/soft-wall  op t imiza t ion  
s t u d i e s .  Further ,  f o r  the frequencies  i n  f i g u r e  13 f o r  which the uniform l i n e r  gave 
s l i g h t l y  higher  t ransmission lo s ses  than the segmented l i n e r ,  the f u l l y  t r e a t e d  

Thus, a uniform l i n e r  s t r ipped  with aluminum tape  may provide the  best method of 
increas ing  the  performance of a uniform l i n e r  f o r  high m-number sources .  Fur ther ,  
removing the  s t r i p s  of aluminum tape and i n s t a l l i n g  a c o u s t i c  t reatment  may a c t u a l l y  
decrease the performance of the  l i n e r .  

r e s t r i c t e d  one s e c t i o n  of the segmented liner t o  be a hard w a l l  so that  82  w a s  

p, = p2. Although a t  some 

segmented-liner r e s u l t s  converged with the  unif  orm-liner values  where PI = B2' 

Off - O p t i m u m  S tudies  

In  order  to  v e r i f y  the  accuracy of the  mode matching equat ions used h e r e i n ,  
sample c a l c u l a t i o n s  f o r  a uniform l i n e r  with L = 2 w e r e  computed and compared t o  
r e s u l t s  obtained from the  a n a l y s i s  of Zorumski ( r e f .  1 ) .  Computations obtained from 
Zorumski's ana lys i s  w e r e  based on the assumption t h a t  t he  superpos i t ion  of 10 s o f t -  
w a l l  modes could adequately r ep resen t  t he  i n c i d e n t  wave. In  add i t ion ,  t he  vers ion  of 
Zorumski's a n a l y s i s  used included only s i n g l e  i n t e r f a c e  e f f e c t s .  Therefore,  f o r  
comparison purposes, mode matching equat ions w e r e  developed €or  a s i n g l e  i n t e r f a c e  
so that the  second hard-wall s e c t i o n  (see f i g .  5 )  was removed and replaced by a 
nonref lec t ing  terminat ion a t  z = L. 
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Values from sample c a l c u l a t i o n s  are presented i n  f i g u r e  19 f o r  an i n c i d e n t  plane 
w a v e  (P1(r,8,0) = 1 ) .  The admittance values used a t  each frequency t o  compute the  
t ransmission l o s s e s  are optimum f o r  no r e f l e c t i o n s  a t  z = L. A s  depicted i n  f i g -  
ure  19, e x c e l l e n t  agreement between t h i s  a n a l y s i s  and t h a t  of reference 1 is obtained.  
A p l o t  of values from a second sample c a l c u l a t i o n  is presented i n  f i g u r e  20. Although 
the admittance values used to  o b t a i n  the t ransmission l o s s e s  i n  f i g u r e  20 are the  same 
as those used i n  f i g u r e  19, t h e  i n c i d e n t  wave has been changed t o  

T 

Discrepancies of about 11 pe rcen t  a t  K = 4 and 26 percen t  a t  K = 5 are observed 
i n  the transmission l o s s e s  computed from t h i s  a n a l y s i s  and t h a t  of Zorumski. Excel- 
l e n t  agreement i s  obtained f o r  K > 5. Further ,  it should be noted t h a t  by increas-  
i ng  N from 9 t o  20, t he  discrepancy a t  K = 4 w a s  reduced t o  less than 2 percen t ,  
though no s i g n i f i c a n t  improvement i n  t h e  discrepancy a t  K = 5 w a s  observed. It is  
bel ieved t h i s  discrepancy can be removed by a supe rpos i t i on  of more than 10 so f t -wa l l  
modes t o  r ep resen t  t he  i n c i d e n t  wave i n  Zorumski's ana lys i s .  Overall ,  good agreement 
has been obtained between t h i s  a n a l y s i s  and the  a n a l y s i s  used i n  reference 1. This 
l eads  t o  a degree of confidence i n  the  mode matching equat ions developed i n  t h i s  
paper. 

Having developed confidence i n  the  a n a l y s i s ,  we can now proceed t o  show t h a t  
t he  a n a l y s i s  gives r e s u l t s  c o n s i s t e n t  with the experimental  observat ions of Mani 
( r e f .  5 ) .  Figure 21 compares transmission-loss values f o r  a uniform and a segmented 
l i n e r  bu t  f o r  an i n c i d e n t  wave with m = 10 
va lues  w e r e  computed f o r  L = 2 with equation (25)  being used t o  compute the 
transmission-loss spectrum. 
t h e  conductance and susceptance vary with frequency as shown i n  f i g u r e s  13 and 14. 
The segmented-liner admittance funct ion w a s  obtained by s e t t i n g  T = 10, 
and PI t h e  same as t h e  uniform l i n e r  (i.e., the segmented l i n e r  is simply the 
uniform l i n e r  s t r i p p e d  with 10 evenly spaced s t r i p s  of aluminum t a p e ) .  
i n  f i g u r e  21, s i g n i f i c a n t  i nc reases  i n  performance can be r e a l i z e d  by s t r i p p i n g  the  
uniform l i n e r ,  p a r t i c u l a r l y  a t  t h e  frequencies c l o s e s t  t o  c u t  on of the m = 10 
c i r cumfe ren t i a l  mode. I t  must be emphasized t h a t  t he  increased suppression of t h e  
segmented l i n e r  over t h e  uniform l i n e r  as depicted i n  f i g u r e  21 may not hold 
gene ra l ly  s i n c e  the  admittance 
l i n e r  w a s  optimized. Thus, d i f f e r e n t  values of t he  admittance P I  may show the 
uniform l i n e r  t o  be s u p e r i o r  t o  the  segmented one. This may, however, be repre- 
s e n t a t i v e  of t he  e f f e c t  observed by Mani i n  reference 5. 

(P1(r ,8 ,0)  = cos 108 J l o ~ A l o , o r ~ ~ .  

The uniform-liner admittance w a s  s e t  equal  t o  P , ,  where 

P2 = 0 + O i ,  

A s  depicted 

P I  w a s  d e l i b e r a t e l y  chosen so t h a t  the segmented 

A more r igorous comparison of t he  performance of a uniform and a segmented l i n e r  
is obtained when both l i n e r s  are optimized, o r  tuned, a t  a f i x e d  frequency. This 
allows a comparison of t he  off-optimum performance of t he  two l i n e r s .  Figure 22 
compares the  transmission-loss spectrum f o r  a uniform and a segmented l i n e r  with a 
hard-wall/soft-wall  admittance va r i a t ion .  Both the  uniform and the  segmented l i n e r  
are tuned a t  K = 20 so t h a t  they are optimum only a t  t h i s  frequency. The segmented 
l i n e r  gives  better performance no t  only a t  t h e  tuning frequency, K = 20, b u t  a t  
o the r  f requencies  as w e l l .  S imilar  t r ends  w e r e  observed when the tuning frequency of 
t h e  two l i n e r s  w a s  K = 18 and K = 16. 
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E f f e c t s  of Duct Length 

Figures 23, 24, and 25 compare the  t ransmission-loss  spectrums computed from 
equat ion (25) €or a uniform and a segmented l i n e r  f o r  L = 1/2, 1 ,  and 2. The 
i n c i d e n t  wave €or t h e  f i g u r e s  w a s  chosen t o  be PI(,, 8,O) = cos 58 J5 ( l ~ ~ , ~ r )  
whereas the  admittance funct ion f o r  t h e  segmented l i n e r  w a s  chosen so that  
T = 5, p2 = 0, and PI = 1.00 - 0.62i (i.e., P I  is an a r b i t r a r i l y  chosen 
v a l u e ) .  The admittance of the uniform l i n e r  w a s  the same as p1 f o r  t h e  segmented 
l i n e r .  Thus, t he  segmented-liner conf igu ra t ion  can be obtained by s t r i p p i n g  t h e  
uniform l i n e r  w i t h  tape.  (This is the conf igu ra t ion  proposed by Mani i n  r e f .  5.) 
One can see from t h e  f i g u r e s  t h a t  t h e  segmented-liner performance inc reases  r e l a t i v e  
t o  the uniform l i n e r  as dimensionless duc t  length inc reases .  For L = 2, t h e  seg- 
mented l i n e r  performs better than t h e  uniform l i n e r  a t  a l l  f requencies  considered. 
This is s u r p r i s i n g  s i n c e  only 50 pe rcen t  of the segmented l i n e r  is t r e a t e d  (i.e., 
p2  = 0). 

The t o t a l  and modal transmission losses (see eqs. (25) and ( 2 6 ) )  are probably 
a l s o  s t rong ly  a f f e c t e d  by the duct  length L. Figure 26 i l l u s t r a t e s  t o t a l  and modal 
t ransmission lo s ses  obtained f o r  a segmented l i n e r  as a func t ion  of dimensionless 
duct  length.  The computer c a l c u l a t i o n s  w e r e  made with K = 4.4, f3 = 0 + O i ,  
PI = 1 + 2 i ,  
used t o  compute the  transmission lo s ses  so t h a t  the effects of both hard-wall i n t e r -  
faces  are included. Results i n  the f i g u r e  show t h a t  t he  c i r c u m f e r e n t i a l l y  segmented 
l i n e r  has s c a t t e r e d  a c o u s t i c  energy i n t o  higher order  c i r cumfe ren t i a l  modes than 
those p re sen t  a t  the source. Since TL3 is a t  l eas t  10 dB above TL2 and TL1, 
only a s m a l l  po r t ion  of t he  t o t a l  power is c a r r i e d  by the  m = 3 mode i n  the  second 
hard-wall s ec t ion .  Note a l s o  t h a t  TLl and TL2 are approximately equal  when 
1 < L < 2. Thus, the c i r cumfe ren t i a l ly  segmented l i n e r  has d i s t r i b u t e d  energy 
equa l ly  between the m = 1 and m = 2 modes i n  the second hard-wall s e c t i o n  f o r  
t h i s  range of L values.  

T = 1 ,  and P1(r,8,0) = c o s  8 J l ( A l  o r ) .  Equations 725) and (26) w e r e  

CONCLUSIONS 

Optimum and off-optimum p r o p e r t i e s  of c i r c u m f e r e n t i a l l y  segmented duct  l i n e r s  
have been compared with those of uniform l i n e r s  t o  analyze poss ib l e  b e n e f i t s  of 
c i r cumfe ren t i a l  segmentation. Based on the r e s u l t s  of t h i s  work, the fol lowing 
conclusions have been made: 

1 .  c i r cumfe ren t i a l ly  segmented l i n e r s  scatter a c o u s t i c  energy among var ious 
c i r cumfe ren t i a l  wave numbers m. Resul ts  i n d i c a t e  t h a t  f o r  some 
frequencies  and duct  lengths ,  t he  segmented l i n e r  may scatter source energy 
equa l ly  between a lower and higher order  c i r cumfe ren t i a l  wave number. 

2. For low m-number sources,  t he re  i s  no advantage t o  an optimized circum- 
f e r e n t i a l l y  segmented l i n e r  over an optimized uniform l i n e r .  

3. For high m-number sources,  an optimized c i r c u m f e r e n t i a l l y  segmented l i n e r  
gives b e t t e r  performance than an optimized uniform l i n e r .  

4. Segmented-liner configurat ions c o n s i s t i n g  of a hard-wall/soft-wall 
combination r ep resen t  an optimum conf igu ra t ion  f o r  high m-number sources .  
Thus, r ep lac ing  the  hard-wall strips with a c o u s t i c  t reatment  may decrease 
the  performance of the l i n e r .  

14 



5. Overal l ,  t he  g r e a t e s t  b e n e f i t  of c i r cumfe ren t i a l ly  segmented l i n e r s  over 
uniform l i n e r s  occurred away from the  optimum po in t .  off the  optimum 
po in t ,  segmented l i n e r s  give more e f f e c t i v e  broadband performance with a 
50-percent reduct ion  i n  the  amount of a c o u s t i c  t reatment .  

6. Increases  i n  performance of t he  segmented l i n e r  r e l a t i v e  t o  the  uniform 
Liner are g r e a t e s t  a t  f requencies  c l o s e s t  t o  c u t  on of the c i rcumferent ia l  
mode number of the source. 

It  should be emphasized t h a t  opt imizat ion s t u d i e s  were f o r  a duct  length-to- 
rad ius  r a t i o  of 2, so these  conclusions may no t  hold f o r  a l l  duc t  lengths .  Resul t s  
presented  here  are s u f f i c i e n t l y  encouraging ( p a r t i c u l a r l y  f o r  t he  high m-number 
sources)  t o  warrant  f u r t h e r  s t u d i e s  involving c i r cumfe ren t i a l ly  segmented l i n e r s  i n  
s e r i e s  o r  i n  checkerboard l i n e r s ,  t he  e f f e c t s  of mul t ip le  m-number sources ,  and the  
convective and r e f r a c t i v e  e f f e c t  of a mean flow. 

Langley Research Center 
Nat iona l  Aeronautics and Space Administration 
Hampton, VA 23665 
August 2, 1982 
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APPENDIX A 

EXACT SOLUTION FOR CIRCUMFERENTIALLY SEGMENTED LINER 

This appendix p re sen t s  the  de r iva t ion  of t he  exac t  s o l u t i o n  t o  the  e l l i p t i c  
par t ia l  d i f f e r e n t i a l  equat ion (eq. (9)) 

2 2 v p R ( r , e )  + R R  P ( r , e j  = o 

and boundary cond i t ion  

Rb(0) = 0 

where 

and 

+ ...) s i n  3T0 + s i n  5T0 
3 5 p( 0) = + 

The goal  of the  de r iva t ion  of t h i s  equat ion is t o  show how the  p e r i o d i c i t y  of t h e  
a c o u s t i c  l i n e r  T s e l e c t s  p re fe r r ed  values of c i r cumfe ren t i a l  mode orders .  This is  
of g r e a t  u t i l i t y  i n  t h a t  it provides g r e a t e r  phys ica l  i n s i g h t  i n t o  how source energy 
i s  r e d i s t r i b u t e d  i n t o  higher  c i r cumfe ren t i a l  mode orders  and it may lead t o  more 
r e a l i s t i c  design c r i t e r i a .  

I t  is  eas i ly .  v e r i f i a b l e  t h a t  each of the func t ions  cos m0 J m ( h R r )  and 
s i n  m e  j , (hRr)  i s  a s o l u t i o n  t o  equat ion (9 ) .  
t h i s  equat ion i s  obtained by using the  superpos i t ion  p r i n c i p l e  

Thus, t he  m o s t  genera l  s o l u t i o n  t o  

Although a r b i t r a r y  values  of t he  parameters A i ,  Bi, and hR s a t i s f y  equat ion (9), 
only  se l ec t ed  values  of these  parameters w i l l  s a t i s f y  the  boundary condi t ions  imposed 
by the c i r cumfe ren t i a l ly  segmented l i ne r  (eq. ( A I ) ) .  Thus, it is  s t i l l  a matter of 
cons iderable  mathematical d i f f i c u l t y  to  f i n d  the  d i s c r e t e  values  of +-he c o e f f i c i e n t s  4 and BR and of e igenvalue hR which cause the  boundary r e s i d u a l  ~ ~ ( 0 )  t o  
vanish as ind ica t ed  by equat ion ( A l ) .  I? 

16 
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APPENDIX A 

To s a t i s f y  the boundary condi t ion  imposed by the c i r cumfe ren t i a l ly  segmented 
l i n e r ,  one can make use of t he  f a c t  t h a t  t he  set of func t ions  (cos  m e ,  s i n  m e )  
r ep resen t s  a complete se t  on the  i n t e r v a l  0 to  2x and t h a t  only the  zero  func t ion  can 
be orthogonal t o  each member of a complete set. I t  is  necessary t h a t  

% ( e )  cos m e  d e  = 0 
J O  

and 

Equation 

% ( e )  s i n  m e  de = 0 
J O  

(AS) and ( A 6 )  are an a l t e r n a t  

( m  = 0, I ,  ... 1 (A51 

( m  = I ,  2, ... ) ( A 6 1  

ray of s a t i s f y i n g  equat ion (Al) and are 
based on Galerk in ' s  method ( r e f .  I O ) .  Further ,  the  c o l l e c t i o n  of equat ions (A5) 
and ( A 6 )  f o r  each c i r cumfe ren t i a l  mode order  m forms a set  of simultaneous 
equat ions t h a t  can be expressed as 

where [D]  is the  complex c o e f f i c i e n t  matrix, {X} is  the  unknown vector  of Fourier  
c o e f f i c i e n t s ,  and (0) i s  the  n u l l  vector .  Ordinar i ly ,  equat ion ( A 7 1  is solved t o  
ob ta in  the  unknown vec tor  {X} and the  eigenvalue AI i s  determined by r equ i r ing  
t h a t  the  determinant  of t he  c o e f f i c i e n t  matr ix  vanish. It w i l l  now be shown t h a t  
only a subse t  of t h i s  more gene ra l  equat ion need be solved €or any given source.  

The detailed s t r u c t u r e  of t he  matr ix  equat ion given by equation ( A 7 )  f o r  a l i n e r  
with p e r i o d i c i t y  T is 

where [Ds] i s  a square matrix, {xs} is  an unknown vec tor  of t he  same order  as 
[ D s ] ,  s u b s c r i p t  s is the index 0, I ,  ..., T, and the s u p e r s c r i p t  T denotes the 
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transpose.  The diagonal  c h a r a c t e r  of [D] implies the  p e r i o d i c i t y  of t he  acous t i c  
l i n e r  decouples equation ( A 7 1  i n t o  ( T  + 1 )  eigenvalue problems 

where the vec to r s  {xs} are 

( S  = T) 

where s u p e r s c r i p t  i n d i c a t e s  t he  exac t  e igenfunct ion index. Thus, each sub- 
eigenvalue problem 
t h e  eigenfunct ions P ( r , 8 )  f o r  each subproblem are mutually orthogonal. This means 
t h a t  the only subprobfems which need t o  be solved f o r  any given source are those 
which contain the c i r cumfe ren t i a l  mode o rde r s  of the source.  For example, only t h e  
subeigenvalue problem needs t o  be solved f o r  an axisymmetric (cir- 
c w f e r e n t i a l l y  uniform) source. Further ,  t he  matrices [Ds ] should be t runcated a t  
some f i n i t e  order .  (For example, r e s u l t s  i n  t h e  t e x t  use only the f irst  s i x  
c i r cumfe ren t i a l  mode o rde r s  so t h a t  [Ds] w i l l  be of o rde r  s i x . )  Eigenvalues f o r  
each subproblem are obtained by s e t t i n g  each determinate i n  equat ion ( A 8 )  to  zero 

[Ds]{Xs} = (0) can be solved independently of each o the r  and 

[Do]{Xo}  = (0) 

s o  t h a t  these determinants determined the  exac t  t r anscenden ta l  equations f o r  a cir- 
cumferent ia l ly  segmented l i n e r .  Note a l s o  t h a t  the e x a c t  t r anscenden ta l  equation f o r  
a uniform l i n e r  is  obtained by s e t t i n g  
approach i n f i n i t y .  Under these  condi t ions 

p1 = p2 and al lowing the  p e r i o d i c i t y  t o  

so tha t  resu l t s  here  do degenerate t o  the  exac t  s o l u t i o n  for uniform l i n e r s .  

1 8  



APPENDIX B 

DAVIDON-FLETCHER-POWELL ( D F P )  OPTIMIZATION ALGORITHM 

In  t h i s  appendix, m o r e  d e t a i l e d  information concerning the  opt imizat ion of the  
t ransmission-loss  func t ion  is  presented.  This t ransmission-loss  func t ion  i s  
expressed i n  t e r m s  of an admittance vector  
4 x 1 admittance vec tor  

TL( @, ,@,) = TL{d}, where {d} is  the  

S t a r t i n g  with an i n i t i a l  admittance vector  {ak}, i n  which the  s u p e r s c r i p t  k 
is  an i t e r a t i o n  counter ,  it is the  purpose of t he  DFP a lgori thm t o  move i n  a 
d i r e c t i o n  s p e c i f i e d  by the  a scen t  vec tor  
t ransmission loss is obtained a t  the  next value of t he  admittance vector  
The s t e p s  i n  the  DFP a lgori thm ( r e f .  1 1 )  are as follows: 

ISk} so t h a t  a g r e a t e r  value of t h e  
Idk+’}. 

0 
{d } 1.  S t a r t  with an i n i t i a l  admittance vec tor  and any 4 x 4 symmetric 

p o s i t i v e - d e f i n i t e  matr ix  {HO}. ( H e r e ,  {Ho} w a s  chosen as the  i d e n t i t y  
matrix.  ) 

2. Beginning with k = 0, compute ASk} = -[Hk]{gk}, where 
g r a d i e n t  vec tor  of TL a t  {d }. 

3.  Obtain the  parameter ak which maximizes 

{&} is  the  

4. S e t  

k k  {ak”} = {ak} + a (6 } 

{Yk} = {gk+l} - Isk} 

and 

where the  s u p e r s c r i p t  T denotes t ranspose.  

5. S e t  k = k + 1 and r e t u r n  to  step. 1. 
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For t h i s  work, t he  i t e r a t i o n  process  w a s  continued u n t i l  t he  d i f f e r e n c e  between 
{dk+' } and {dk} w a s  a t  least  Note t h a t  the square matr ix  [Hk]  i s  

updated a t  each i t e r a t i o n  i n  an attempt t o  have t h e  a lgor i thm converge more r a p i d l y  
than the method of s t e e p e s t  a scen t  ( i n  which case  
i n  an a t tempt  t o  be computationally more e f f i c i e n t  than Newton's method ( i n  which 
case 
matr ix ,  f o r  which eva lua t ion  is e i t h e r  too c o s t l y  o r  impractical). 

[Hk]  is t h e  i d e n t i t y  ma t r ix )  and 

[Hk] is the  inve r se  of the matr ix  of second par t ia ls ,  o r  the inve r se  Hessian 

Although the  DFP algori thm has worked w e l l  i n  t he  p a s t  on duct  t ransmiss ion  
problems, t he re  are s t i l l  de fec t s  i n  the  method which should be considered when 
opt imizing acous t i c  l i n e r s .  For example, s t e p s  2 and 4 r e q u i r e  the computation of 
t h e  g rad ien t  of the  t ransmission-loss  funct ion,  
computed numerically and the error i n  the  numerical computation a f f e c t s  the 
convergence of the  algorithm. In t h i s  paper the g r a d i e n t  w a s  computed by f i n i t e  
d i f f e renc ing .  On the  o the r  hand, s t e p  3 of the  DFP algori thm requ i r e s  t h a t  t he  

k k  k func t ion  TL({dk} + a (6 } )  be maximized to  determine the  search  parameter a . 
However, s ince  this func t ion  cannot be maximized a n a l y t i c a l l y ,  numerical techniques 
must be used, which i n  turn  leads  t o  inaccurac ies  i n  the  search  parameter a . Such 
inaccurac ies  i n  
i n  the  admittance plane. The method of repeated p a r a b o l i c  i n t e r p o l a t i o n  w a s  used i n  
t h i s  paper t o  determine Generally,  it has been 
the  au tho r ' s  experience t h a t  no major problems with the  algori thm occur with the  
method of computing the  parameter ak and t ransmission-loss  g r a d i e n t  { gk} used 
here .  A major problem d id  occur with the  i n i t i a l i z a t i o n  vec tor  {do} because the  
DFP algorithm is  not  g loba l ly  convergent. Or ig ina l ly ,  t he  optimum uniform values  
w e r e  used t o  i n i t i a l i z e  the  algori thm; however, these  values  proved t o  be a l o c a l  
optimum, and l a r g e r  t ransmission-loss  values  could be obtained by i n i t i a l i z i n g  the 
algori thm a t  nonuniform values. 

TL( {ak}). This g rad ien t  must be 

k 

$c can cause the  algorithm t o  d iverge  or wander about meaninglessly 

ak i n  step 3 of the  DFP a lgori thm. 

To a l l e v i a t e  t he  problems a s soc ia t ed  with the  i n i t i a l i z a t i o n  of t he  DFP 
algori thm, an a l t e r n a t e  method (henceforth r e f e r r e d  t o  as the  DFPC method) has been 
used. In the  DFPC method, a locus of two-dimensional contours  is used to  ob ta in  
i n i t i a l i z a t i o n  values  which are c l o s e  t o  g loba l  optimums. These i n i t i a l i z a t i o n  
va lues  are then used as inpu t s  t o  the  DFP op t imiza t ion  algori thm. The s t e p s  i n  the 
DFPC method are the  following: 

1 .  Vary R2  and x2 from 1 t o  10 i n  increments of 0.1. 

2. Obtain the  optimum p1 R2 and t ransmission-loss  value a t  each increment on 
o r  x2 by contour mapping. 

3.  Obtain the  g loba l  optimum from the  l o c i  of optimums obtained a t  each value 
of B y  

4. Now use the  DFP algorithm with the  g loba l  optimums obtained from s t e p  3 as 
s t a r t i n g  values. 

Although the DFPC method gives  g loba l  optimum values ,  it w i l l  be q u i t e  expensive 
because a contour map must be obtained a t  each value of p2. Generally,  r e s u l t s  

o b t a i n  the  contour maps i n  which the  increment spacing i n  both d i r e c t i o n s  w a s  
un i ty .  However, a t  some frequencies  the  increment spacing had to  be reduced f u r t h e r  
to  ob ta in  smooth contours, p a r t i c u l a r l y  a t  frequencies  near  c u t  on. 

p resented  he re in  use 10 po in t s  on both the  r e a l  and the  imaginary a x i s  of B1 t o  

2 0  r 
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amplitude of r i g h t  and l e f t  moving wave i n  c i r cumfe ren t i a l ly  
segmented l i n e r  

c o e f f i c i e n t s  i n  exac t  expansion of e igenfunct ion PA(',@) 

c o e f f i c i e n t s  i n  hard-wall duct  expansion of the exact eigen- 
func t ion  PA(', 0 )  

duct  r a d i u s  

c o e f f i c i e n t s  of Bessel-Fourier expansion of i n c i d e n t  wave i n  
f i r s t  hard-wall s e c t i o n  

c o e f f i c i e n t s  of Bessel-Fourier expansion of r e f l e c t e d  wave i n  
f i r s t  hard-wall s e c t i o n  

c o e f f i c i e n t s  of Bessel-Fourier expansion of t ransmit ted wave i n  
second hard-wall s ec t ion  

ambient speed of sound 

c o e f f i c i e n t  i n  hard-wall duc t  expansion of Bessel funct ion Jm(hA)  

complex admittance vector  

complex admittance vector  with i t e r a t i o n  k 

complex c o e f f i c i e n t  matrices 

r e s i d u a l  vector  

components of r e s i d u a l  vector  {E} 

known-constant vector  

g r a d i e n t  of transmission-loss func t ion  with i t e r a t i o n  k 

symmetric p o s i t i v e - d e f i n i t e  matr ix  of o rde r  k 

u n i t  imaginary number 

Bessel funct ion of f i r s t  kind of o rde r  m 

wave number 

a x i a l  wave numbers 

predetermined length over which t ransmission loss is computed 



M i N  t o t a l  numer of m and n values 

m = 01 11  . . . I  M -. 1 

N normalization cons t an t  f o r  hard-wall b a s i s  funct ions 
mIn 

n = 01 1 1  . . . I  N - 1 

p ( r ,  0 , z )  a c o u s t i c  pressure f i e l d  i n  duc t  with c i r cumfe ren t i a l ly  segmented 
l i n e r  

i n c i d e n t  and r e f l e c t e d  p res su re  f i e l d  i n  f i r s t  hard-wall R P1(rl 0 , z )  ,P ( r I  ~ , z )  
sect ion  

a c o u s t i c  p re s su re  eigenfunct ion 

t r ansmi t t ed  wave i n  second hard-wall s e c t i o n  

source p re s su re  funct ion i n  semi - in f in i t e  duct  

r e s i s t a n c e  of segmented l i n e r  

boundary r e s i d u a l  

real  p a r t  of complex expression 

r a d i a l  and a x i a l  coordinates  

p e r i o d i c i t y  of segmented l i n e r  

t o t a l  transmission-loss funct ion 

t ransmission loss of c i r cumfe ren t i a l  mode m 

t i m e  

t o t a l  sound power a t  a x i a l  l o c a t i o n  z 

sound power i n  c i r cumfe ren t i a l  mode m a t  a x i a l  l o c a t i o n  z 

unknown-constant vectors  

s ea rch  parameter 

a c o u s t i c  admittances 

average admittance f o r  c i r cumfe ren t i a l ly  segmented l i n e r  

a s c e n t  vector  with i t e r a t i o n  k 

e igenvalues  of c i r cumfe ren t i a l ly  segmented and hard-wall duct  

ambient d e n s i t y  

unknown vector  
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w 

X 

v2 

angular  frequency 

reac tance  of segmented l i n e r  

Laplace opera tor  

Subscr ip ts :  

R e x a c t  e igenfunct ion index 

m c i r cumfe ren t i a l  wave number index 

n r a d i a l  e igenfunct ion  index f o r  hard-wall duc t  

S subeigenvalue problem index, s = 0, 1 ,  ..., T 

Superscr ip ts :  

k i t e r a t i o n  index 

T t ranspose ope ra to r  

A bar  over a symbol denotes a dimensional quan t i ty .  A prime denotes d e r i v a t i v e  
with r e spec t  t o  the  argument. 
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Figure 1 . -  Duct l iner concepts. 

1 iner 

segmented 1 iner 
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Circumferentially segmented liner 

Figure  2.- Semi- inf ini te  c i r c u l a r  duc t  with c i r c u m f e r e n t i a l l y  segmented 
l i n e r  and coordinate  system. 
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Figure 3.- Circumferent ia l ly  segmented l i n e r  w i th  p e r i o d i c i t y  T = 4. 
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First hard-wall r 
section 

Figure  4.- Circumferent ia l ly  segmented l i n e r  i n s t a l l e d  i n  hard-wall duct. 
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----- Segmented ( s t r i p p e d )  l i n e r ,  T = 10 

Dimensionless frequency, K 

Figure 21 .- Transmission loss of segmented ( s t r i p p e d )  and uniform 
l i n e r s  €or standing-wave source. m = 10. 
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Figure 26 . -  Total and modal transmission l o s s e s  for  segmented l iner  with 
standing-wave source. m = 1 .  
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